skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Galas, Jean-Christophe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on the collective response of an assembly of chemomechanical Belousov-Zhabotinsky (BZ) hydrogel beads. We first demonstrate that a single isolated spherical BZ hydrogel bead with a radius below a critical value does not oscillate, whereas an assembly of the same BZ hydrogel beads presents chemical oscillation. A BZ chemical model with an additional flux of chemicals out of the BZ hydrogel captures the experimentally observed transition from oxidized nonoscillating to oscillating BZ hydrogels and shows this transition is due to a flux of inhibitors out of the BZ hydrogel. The model also captures the role of neighboring BZ hydrogel beads in decreasing the critical size for an assembly of BZ hydrogel beads to oscillate. We finally leverage the quorum sensing behavior of the collective to trigger their chemomechanical oscillation and discuss how this collective effect can be used to enhance the oscillatory strain of these active BZ hydrogels. These findings could help guide the eventual fabrication of a swarm of autonomous, communicating, and motile hydrogels. 
    more » « less
  2. Active gels made of cytoskeletal proteins are valuable materials with attractive non-equilibrium properties such as spatial self-organization and self-propulsion. At least four typical routes to spatial patterning have been reported to date in different types of cytoskeletal active gels: bending and buckling instabilities in extensile systems, and global and local contraction instabilities in contractile gels. Here we report the observation of these four instabilities in a single type of active gel and we show that they are controlled by two parameters: the concentrations of ATP and depletion agent. We demonstrate that as the ATP concentration decreases, the concentration of passive motors increases until the gel undergoes a gelation transition. At this point, buckling is selected against bending, while global contraction is favored over local ones. Our observations are coherent with a hydrodynamic model of a viscoelastic active gel where the filaments are crosslinked with a characteristic time that diverges as the ATP concentration decreases. Our work thus provides a unified view of spatial instabilities in cytoskeletal active matter. 
    more » « less